Algorithmic Grooming
noun
Algorithmic Grooming refers to the slow, cumulative process by which digital platforms condition users’ tastes, attention, and behavior through repeated, curated exposure that feels personalized but is strategically engineered. Rather than directing users abruptly, the system nudges them incrementally—rewarding certain clicks, emotions, and patterns while starving others—until preferences begin to align with the platform’s commercial and engagement goals. The grooming is effective precisely because it feels voluntary and benign; users experience it as discovery, convenience, or self-expression. Yet over time, choice narrows, novelty fades, and autonomy erodes, as the algorithm trains the user to want what is most profitable to serve. What appears as personalization is, in practice, a quiet apprenticeship in predictability.
***
In Filterworld, Kyle Chayka describes algorithmic recommendations with clinical clarity: systems that inhale mountains of user data, run it through equations, and exhale whatever best serves preset goals. Those goals are not yours. They belong to Google Search, Facebook, Spotify, Netflix, TikTok—the platforms that quietly choreograph your days. You tell yourself you’re shaping your feed, curating a digital self-portrait. In reality, the feed is shaping you back, sanding down your edges, rewarding certain impulses, discouraging others. What feels like mutual interdependence is a one-sided apprenticeship in predictability. The changes you undergo—your tastes, habits, even your sense of self—aren’t acts of self-authorship so much as behavior modification in service of attention capture and commerce. And crucially, this isn’t some neutral, machine-led drift. As Chayka points out, there are humans behind the curtain, tweaking the levers with intent. They pull the strings. You dance.
The cultural fallout is flattening. When everyone is groomed by similar incentives, culture loses texture and people begin to resemble one another—algorithmically smoothed, aesthetically standardized. Chayka borrows Jia Tolentino’s example of the “Instagram face”: the ethnically ambiguous, surgically perfected, cat-like beauty that looks less human than rendered. It’s a face optimized for engagement, not expression. And it serves as a tidy metaphor for algorithmic grooming’s endgame. What begins as personalization ends in dehumanization. The algorithm doesn’t just recommend content; it quietly trains us to become the kind of people that content is easiest to sell to—interchangeable, compliant, and eerily smooth.

Leave a comment